CS 251 — LECTURE 7

Bartosz Antczak Instructor: Stephen Mann January 24, 2017

Note: unused states

In the graphical representation for a finite state machine, for any states that aren’t included, they are unused

states.

7.1 Number Representation

Focusing on binary numbers, we can define what each 32-bit binary string represents.

Unsigned Binary Numbers

Unsigned means a positive number. Binary numbers are stored in 32-bits of memory, thus we can represent
the numbers 0 through 232 — 1 = 4,294, 967, 295.

Signed Binary Numbers

Signed numbers include negative numbers. How do we represent binary numbers as a negative? We use
two’s compliment (outlined more in detail in the lecture 1 notes for CS 241, subsection 1.2.1).

The idea is that we let MSB represent the negative of a power of 2. For instance, with 4 bits, bit 3
(MSB) represents 273, which is 1110 in two’s compliment. With 32 bits, we can represent the numbers
—2,147,483, 648 to 2,147,483,647. When we add 32-bit binary numbers and result in a sum that is larger
than 32 bits, the processor simply cuts off the leading digits until we have 32 bits.

To visualize this, let’s simplify to 4-bit binary numbers: if we calculate 1111 + 1 = 10000, we cut off the
leading 1, thus our answer is 0000. This is called overflow. This overflow creates a pseudo-modulo counting

system: Signed binary digits are negative if the first bit is a 1; positive otherwise.

Pictorial Representation, 4 Bits

1001 0111 1001
1000 1000 1000

Unsigned Signed Magnitude Two’s Complement

Figure 7.1: Source: The 4-bit binary representation for each number. Courtesy of Prof. Mann’s slides.



7.1.1 Sign Extension

With 4 bits, 0110 is +6, but what is it with 8 bits? Similarly with 4 bits, 1010 is —6, and again we ask,
what is it with 8 bits?

For +6, it’s simple: just add the correct number of zeros to the front of the binary string (i.e., +6 in 8 bits
becomes 0000 0110).

Similarly for —6, rather than zeros, add the correct number of ones to the front of the binary string (i.e., —6
in 8 bits becomes 1111 1010).

7.1.2 Adding Binary Numbers

Adding binary numbers, we simply use the “elementary school algorithm” (outlined in my notes for CS 241
lecture 1, in example 1.2.2). To subtract numbers, we negate and then add.

As previously mentioned, overflow may occur because the sum of both addends contains more bits (i.e.,
adding two 32-bit strings can yield a 33-bit string, which is overflow!).

Overflow cannot occur, so the leading extra bits are cut off. This means that overflow occurs when both of

the addends have the same sign but the answer has a different sign.

7.1.3 Building an Addition Circuit

Let’s build a simple adder that takes three bits as input and outputs a 2-bit sum (i.e., add A, B, and Cin,
and output in two bits as Cout, S). The truth table defining the circuit is

A B Cin | Cout S
0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1

The Boolean formulas for the outputs are defined as:

Cout = AB + ACin + BCin (this means that Cout is only 1 if at least 2 digits are 1)
S = A@Bein (if there are one or three 1’s)

The circuit constructed from these formulas is shown on the next page.
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Figure 7.2: Courtesy of Prof. Mann’s slides.

7.1.4 Logical Operations

This subsection outlines bitwise and, bitwise or, and shifting operations on binary numbers. My CS 241

notes from lecture 6, subsection 6.2.1 outline the exact same thing we’re learning in this in this topic.



